Endogenous cannabinoid signaling is essential for stress adaptation.
نویسندگان
چکیده
Secretion of glucocorticoid hormones during stress produces an array of physiological changes that are adaptive and beneficial in the short term. In the face of repeated stress exposure, however, habituation of the glucocorticoid response is essential as prolonged glucocorticoid secretion can produce deleterious effects on metabolic, immune, cardiovascular, and neurobiological function. Endocannabinoid signaling responds to and regulates the activity of the hypothalamic-pituitary-adrenal (HPA) axis that governs the secretion of glucocorticoids; however, the role this system plays in adaptation of the neuroendocrine response to repeated stress is not well characterized. Herein, we demonstrate a divergent regulation of the two endocannabinoid ligands, N-arachidonylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG), following repeated stress such that AEA content is persistently decreased throughout the corticolimbic stress circuit, whereas 2-AG is exclusively elevated within the amygdala in a stress-dependent manner. Pharmacological studies demonstrate that this divergent regulation of AEA and 2-AG contribute to distinct forms of HPA axis habituation. Inhibition of AEA hydrolysis prevented the development of basal hypersecretion of corticosterone following repeated stress. In contrast, systemic or intra-amygdalar administration of a CB(1) receptor antagonist before the final stress exposure prevented the repeated stress-induced decline in corticosterone responses. The present findings demonstrate an important role for endocannabinoid signaling in the process of stress HPA habituation, and suggest that AEA and 2-AG modulate different components of the adrenocortical response to repeated stressor exposure.
منابع مشابه
The endocannabinoid system in invertebrates.
What is the role of the cannabinoid system in invertebrates and can it tell us something about the human system? We discuss in this review the possible presence of the cannabinoid system in invertebrates. Endocannabinoid processes, i.e., enzymatic hydrolysis, as well as cannabinoid receptors and endocannabinoids, have been identified in various species of invertebrates. These signal molecules a...
متن کاملCannabinoid receptor involvement in stress-induced cocaine reinstatement: potential interaction with noradrenergic pathways.
This study examined the role of endocannabinoid signaling in stress-induced reinstatement of cocaine seeking and explored the interaction between noradrenergic and endocannabinergic systems in the process. A well-validated preclinical model for human relapse, the rodent conditioned place preference assay, was used. Cocaine-induced place preference was established in C57BL/6 mice using injection...
متن کاملExpression and function of endocannabinoid receptors in the human adrenal cortex.
Endogenous cannabinoids are important signaling molecules in neuroendocrine control of homeostatic and reproductive functions including stress response and energy metabolism. The hypothalamic paraventricular and supraoptic nuclei have been shown to release endocannabinoids, which act as retrograde messengers to modulate the synaptic release of glutamate during stress response. This study endeav...
متن کاملCannabinoids for treatment of Alzheimer’s disease: moving toward the clinic
The limited effectiveness of current therapies against Alzheimer's disease (AD) highlights the need for intensifying research efforts devoted to developing new agents for preventing or retarding the disease process. During the last few years, targeting the endogenous cannabinoid system has emerged as a potential therapeutic approach to treat Alzheimer. The endocannabinoid system is composed by ...
متن کاملThe implication of CNR1 gene's polymorphisms in the modulation of endocannabinoid system effects.
The endocannabinoid system (ECS) represents one of the most important physiologic systems involved in organism homeostasis, having various implications upon individual behavior and metabolic phenotype. It is composed of cannabinoid receptors CB1 and CB2, and their genes (CNR1 and CNR2), their endogenous ligands and the enzymes which mediate endogenous ligands' biosynthesis and degradation. Anan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 20 شماره
صفحات -
تاریخ انتشار 2010